Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 817
1.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Article En | MEDLINE | ID: mdl-38725841

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Autophagy , Cellular Senescence , Intervertebral Disc Degeneration , Membrane Proteins , Nucleus Pulposus , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Animals , Autophagy/physiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Cellular Senescence/physiology , Rats , Male , Rats, Sprague-Dawley , Humans , Mice, Inbred C57BL
2.
Commun Biol ; 7(1): 539, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714886

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Cellular Senescence , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration , Lipid Droplets , Nucleus Pulposus , Palmitic Acid , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/cytology , Endoplasmic Reticulum Stress/drug effects , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Cellular Senescence/drug effects , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Lipid Droplets/metabolism , Male , Female , Adult , Middle Aged
3.
Mil Med Res ; 11(1): 28, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711073

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Cell Cycle Proteins , Glutamine , Intervertebral Disc Degeneration , Mannose , Intervertebral Disc Degeneration/drug therapy , Mannose/pharmacology , Mannose/therapeutic use , Animals , Rats , Glutamine/pharmacology , Glutamine/metabolism , Male , Rats, Sprague-Dawley , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism
4.
Int Immunopharmacol ; 133: 112101, 2024 May 30.
Article En | MEDLINE | ID: mdl-38640717

Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1ß-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1ß. Furthermore, genkwanin alleviated Interleukin-1ß-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.


Apoptosis , Cellular Senescence , Interleukin-1beta , Intervertebral Disc Degeneration , Nucleus Pulposus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Signal Transduction/drug effects , Cellular Senescence/drug effects , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/metabolism , Rats , Phosphatidylinositol 3-Kinases/metabolism , Male , Interleukin-1beta/metabolism , Integrin alpha2/metabolism , Integrin alpha2/genetics , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Disease Models, Animal , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
5.
Sci Rep ; 14(1): 9156, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644369

Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.


Hyaluronan Receptors , Inflammation , Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Cattle , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Inflammation/metabolism , Inflammation/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Cells, Cultured , Interleukin-1beta/metabolism , Proteomics/methods
6.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 164-168, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678607

This study aimed to explore the effects of miR-129-5p on inflammation and nucleus pulposus (NP) cell apoptosis in rats with intervertebral disc degeneration (IVDD) through the c-Jun N-terminal kinase (JNK) signaling pathway. A total of 20 rats were randomly divided into control group (n=10) or IVDD group (n=10). The mRNA expressions of miR-129-5p and apoptosis index Fas in IVDD tissues were determined using RT-PCR. NP cell apoptosis rate was detected via TUNEL assay. NP cells were extracted from IVDD tissues for primary culture. Subsequently, the cells were transfected with miR-129-5p inhibitor or mimic to inhibit or overexpress miR-129-5p, respectively. Furthermore, the changes in the JNK pathway indexes and apoptosis indexes were detected using Western blotting. In IVDD group, the expression of miR-129-5p was significantly down-regulated, while the transcriptional level of Fas was up-regulated compared with those in control group. Pearson correlation analysis revealed a negative correlation between the expressions of miR-129-5p and Fas mRNA (r=-0.75, P<0.05). IVDD group exhibited significantly higher levels of serum TNF-α, IL-6 and IL-1 than control group. Subsequent TUNEL assay indicated that the apoptosis rate was evidently higher in IVDD group (60.6%) than control group (2.5%). The results of Western blotting showed that the protein expressions of JNK1, JNK2 and Fas remarkably rose in IVDD group compared with those in control group. However, they declined remarkably in miR-129-5p mimic group compared with those in control group. Furthermore, such trends were significantly reversed in miR-129-5p inhibitor group. MiR-129-5p was significantly down-regulated in IVDD, whose overexpression has anti-inflammatory and anti-apoptotic effects.


Apoptosis , Inflammation , Intervertebral Disc Degeneration , MAP Kinase Signaling System , MicroRNAs , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Apoptosis/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System/genetics , Male , Rats , fas Receptor/genetics , fas Receptor/metabolism
7.
PeerJ ; 12: e17212, 2024.
Article En | MEDLINE | ID: mdl-38666076

Intervertebral disc degeneration (IVDD) is a common and frequent disease in orthopedics, which seriously affects the quality of life of patients. Endoplasmic reticulum stress (ERS)-regulated autophagy and apoptosis play an important role in nucleus pulposus (NP) cells in IVDD. Hypoxia and serum deprivation were used to induce NP cells. Cell counting kit-8 (CCK-8) assay was used to detect cell activity and immunofluorescence (IF) was applied for the appraisement of glucose regulated protein 78 (GRP78) and green fluorescent protein (GFP)-light chain 3 (LC3). Cell apoptosis was detected by flow cytometry and the expression of LC3II/I was detected by western blot. NP cells under hypoxia and serum deprivation were induced by lipopolysaccharide (LPS), and intervened by ERS inhibitor (4-phenylbutyric acid, 4-PBA) and activator (Thapsigargin, TP). Then, above functional experiments were conducted again and western blot was employed for the evaluation of autophagy-, apoptosis and ERS-related proteins. Finally, NP cells under hypoxia and serum deprivation were stimulated by LPS and intervened using apoptosis inhibitor z-Val-Ala-DL-Asp-fluoromethyl ketone (Z-VAD-FMK) and autophagy inhibitor 3-methyladenine (3-MA). CCK-8 assay, IF, flow cytometry and western blot were performed again. Besides, the levels of inflammatory cytokines were measured with enzyme-linked immunosorbent assay (ELISA) and the protein expressions of programmed death markers were estimated with western blot. It showed that serum deprivation induces autophagy and apoptosis. ERS was significantly activated by LPS in hypoxic and serum deprivation environment, and autophagy and apoptosis were significantly promoted. Overall, ERS affects the occurrence and development of IVDD by regulating autophagy, apoptosis and other programmed death.


Apoptosis , Autophagy , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration , Nucleus Pulposus , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Autophagy/drug effects , Apoptosis/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Endoplasmic Reticulum Stress/drug effects , Humans , Cells, Cultured
8.
BMC Musculoskelet Disord ; 25(1): 321, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654287

BACKGROUND: Increasing studies have shown degeneration of nucleus pulposus cells (NPCs) as an critical part of the progression of intervertebral disc degeneration (IVDD). However, there are relatively few studies on single-cell transcriptome contrasts in human degenerated NPCs. Moreover, differences in Wnt/Ca2+ signaling in human degenerated nucleus pulposus cells have not been elucidated. The aim of this study is to investigate the differential expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans and try to investigate its mechanism. METHODS: We performed bioinformatics analysis using our previously published findings to construct single cell expression profiles of normal and degenerated nucleus pulposus. Then, in-depth differential analysis was used to characterize the expression of Wnt/Ca2+ signaling pathway between normal and degenerated nucleus pulposus cells in humans. RESULTS: The obtained cell data were clustered into five different chondrocytes clusters, which chondrocyte 4 and chondrocyte 5 mainly accounted for a high proportion in degenerated nucleus pulposus tissues, but rarely in normal nucleus pulposus tissues. Genes associated within the Wnt/Ca2+ signaling pathway, such as Wnt5B, FZD1, PLC (PLCB1), CaN (PPP3CA) and NAFATC1 are mainly present in chondrocyte 3, chondrocyte 4 and chondrocyte 5 from degenerated nucleus pulposus tissues. In addition, as a receptor that activates Wnt signaling pathway, LRP5 is mainly highly expressed in chondrocyte 5 of degenerated nucleus pulposus cells. Six genes, ANGPTL4, PTGES, IGFBP3, GDF15, TRIB3 and TNFRSF10B, which are associated with apoptosis and inflammatory responses, and are widespread in chondrocyte 4 and chondrocyte 5, may be closely related to degenerative of nucleus pulposus cells. CONCLUSIONS: Single-cell RNA sequencing revealed differential expression of Wnt/Ca2+ signaling in human normal and degenerated nucleus pulposus cells, and this differential expression may be closely related to the abundance of chondrocyte 4 and chondrocyte 5 in degenerated nucleus pulposus cells. In degenerated nucleus pulposus cells, LRP5 activate Wnt5B, which promotes nucleus pulposus cell apoptosis and inflammatory response by regulating the Wnt/Ca2+ signaling pathway, thereby promoting disc degeneration. ANGPTL4, IGFBP3, PTGES in chondrocyte 4 and TRIB3, GDF15, TNFRSF10B in chondrocyte 5 may play an important role in this process.


Apoptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , Single-Cell Analysis , Wnt Signaling Pathway , Humans , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Wnt Signaling Pathway/genetics , RNA-Seq , Male , Middle Aged , Female , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Adult , Calcium Signaling/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , Transcriptome , Wnt Proteins/genetics , Wnt Proteins/metabolism , Single-Cell Gene Expression Analysis
9.
Acta Biomater ; 180: 244-261, 2024 May.
Article En | MEDLINE | ID: mdl-38615812

Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.


Adipose Tissue , Hydrogels , Mesenchymal Stem Cells , Nucleus Pulposus , Regeneration , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Nucleus Pulposus/cytology , Nucleus Pulposus/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Regeneration/drug effects , Adipose Tissue/cytology , Viscosity , Elasticity , Cell Differentiation/drug effects , Cell Survival/drug effects , Alginates/chemistry , Alginates/pharmacology
10.
Int Immunopharmacol ; 132: 111992, 2024 May 10.
Article En | MEDLINE | ID: mdl-38569428

Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.


Interleukin-17 , Intervertebral Disc Degeneration , Intervertebral Disc Degeneration/immunology , Intervertebral Disc Degeneration/metabolism , Humans , Interleukin-17/metabolism , Animals , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc/immunology , Signal Transduction , Nucleus Pulposus/metabolism , Nucleus Pulposus/immunology , Nucleus Pulposus/pathology , Low Back Pain/immunology , Low Back Pain/metabolism
11.
Int J Biol Macromol ; 266(Pt 2): 131337, 2024 May.
Article En | MEDLINE | ID: mdl-38574911

Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX). First, synthesis of Magnesium-Aluminum-Layered double hydroxide (LDH) was achieved through a co-precipitation methodology, as a carrier for celecoxib and a source of Mg ions. Intercalation of celecoxib within LDH layers (LDH-CLX) was verified through a battery of analytical techniques, including FTIR, XRD, SEM, EDAX, TGA and UV-visible spectroscopy confirmed a drug loading efficiency of 39.22 ± 0.09 % within LDH. Then, LDH-CLX was loaded in the optimal GEL-QCS-LAP hydrogel under physiological conditions. Release behavior (15 days profile), mechanical properties, swelling ratio, and degradation rate of the resulting composite were evaluated. A G* of 15-47 kPa was recorded for the hydrogel at 22-40 °C, indicating gel stability in this temperature range. Self-healing properties and injectability of the composite were proved by rheological measurements. Also, ex vivo injection into intervertebral disc of sheep, evidenced in situ forming and NP cavity filling behavior of the hydrogel. Support of GEL-QCS-LAP/LDH-CLX (containing mg2+ ions) for viability and proliferation (from ~94 % on day 1 to ~134 % on day 7) of NP cells proved using MTT assay, DAPI and Live/Dead assays. The hydrogel could significantly upregulate secretion of glycosaminoglycan (GAG, from 4.68 ± 0.1 to 27.54 ± 1.0 µg/ml), when LHD-CLX3% was loaded. We conclude that presence of mg2+ ion and celecoxib in the hydrogel can lead to creation of a suitable environment that encourages GAG secretion. In conclusion, the formulated hydrogel holds promise as a minimally invasive candidate for degenerative disc repair.


Celecoxib , Chitosan , Gelatin , Hydrogels , Silicates , Hydrogels/chemistry , Hydrogels/pharmacology , Celecoxib/pharmacology , Celecoxib/chemistry , Celecoxib/administration & dosage , Chitosan/chemistry , Gelatin/chemistry , Silicates/chemistry , Silicates/pharmacology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Animals , Drug Liberation , Drug Carriers/chemistry , Drug Delivery Systems , Injections , Rheology
12.
Int Immunopharmacol ; 132: 112028, 2024 May 10.
Article En | MEDLINE | ID: mdl-38593507

Extracellular vesicles (EVs) derived from Mesenchymal Stromal Cells (MSCs) have shown promising therapeutic potential for multiple diseases, including intervertebral disc degeneration (IDD). Nevertheless, the limited production and unstable quality of EVs hindered the clinical application of EVs in IDD. Selenomethionine (Se-Met), the major form of organic selenium present in the cereal diet, showed various beneficial effects, including antioxidant, immunomodulatory and anti-apoptotic effects. In the current study, Se-Met was employed to treat MSCs to investigate whether Se-Met can facilitate the secretion of EVs by MSCs and optimize their therapeutic effects on IDD. On the one hand, Se-Met promoted the production of EVs by enhancing the autophagy activity of MSCs. On the other hand, Se-Met pretreated MSC-derived EVs (Se-EVs) exhibited an enhanced protective effects on alleviating nucleus pulposus cells (NPCs) senescence and attenuating IDD compared with EVs isolated from control MSCs (C-EVs) in vitro and in vivo. Moreover, we performed a miRNA microarray sequencing analysis on EVs to explore the potential mechanism of the protective effects of EVs. The result indicated that miR-125a-5p is markedly enriched in Se-EVs compared to C-EVs. Further in vitro and in vivo experiments revealed that knockdown of miR-125a-5p in Se-EVs (miRKD-Se-EVs) impeded the protective effects of Se-EVs, while overexpression of miR-125a-5p (miROE-Se-EVs) boosted the protective effects. In conclusion, Se-Met facilitated the MSC-derived EVs production and increased miR-125a-5p delivery in Se-EVs, thereby improving the protective effects of MSC-derived EVs on alleviating NPCs senescence and attenuating IDD.


Extracellular Vesicles , Intervertebral Disc Degeneration , Mesenchymal Stem Cells , MicroRNAs , Selenomethionine , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Selenomethionine/pharmacology , Humans , Nucleus Pulposus/metabolism , Cells, Cultured , Male , Cellular Senescence , Mesenchymal Stem Cell Transplantation , Autophagy , Rats, Sprague-Dawley , Rats
13.
Arch Biochem Biophys ; 756: 109990, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636690

Nucleus pulposus (NP) cell apoptosis is a significant indication of accelerated intervertebral disc degeneration; however, the precise mechanism is unelucidated as of yet. Ephrin B2 (EFNB2), the only gene down-regulated in the three degraded intervertebral disc tissue microarray groups (GSE70362, GSE147383 and GSE56081), was screened for examination in this study. Subsequently, EFNB2 was verified to be down-regulated in degraded NP tissue samples. Interleukin-1 (IL-1ß) treatment of NP cells to simulate the IDD environment indicated that IL-1ß treatment decreased EFNB2 expression. In degenerative NP cells stimulated by IL-1ß, EFNB2 knockdown significantly increased the rate of apoptosis as well as the apoptosis-related molecules cleaved-caspase-3 and the Bax to Bcl-2 ratio. EFNB2 was found to promote AKT, PI3K, and mTOR phosphorylation; the PI3K/AKT signaling role was investigated using the PI3K inhibitor LY294002. EFNB2 overexpression significantly increased PI3K/AKT pathway activity in IL-1ß-stimulated NP cells than the normal control. Moreover, EFNB2 partially alleviated NP cell apoptosis induced by IL-1ß, reduced the cleaved-cas3 level, and decreased the Bax/Bcl-2 ratio after the addition of the inhibitor LY294002. Additionally, EFNB2 overexpression inhibited the ERK1/2 phosphorylation; the effects of EFNB2 overexpression on ERK1/2 phosphorylation, degenerative NP cell viability, and cell apoptosis were partially reversed by ERK signaling activator Ceramide C6. EFNB2 comprehensively inhibited the apoptosis of NP cells by activating the PI3K/AKT signaling and inhibiting the ERK signaling, obviating the exacerbation of IDD. EFNB2 could be a potential target to protect against degenerative disc changes.


Apoptosis , Ephrin-B2 , Intervertebral Disc Degeneration , Nucleus Pulposus , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Nucleus Pulposus/drug effects , Apoptosis/drug effects , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/genetics , Ephrin-B2/metabolism , Ephrin-B2/genetics , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Interleukin-1beta/metabolism , Signal Transduction/drug effects , Male , Adult , Female , TOR Serine-Threonine Kinases/metabolism , Cells, Cultured , Middle Aged
14.
Mol Med ; 30(1): 44, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553713

BACKGROUND: Intervertebral disc degeneration (IVDD) is one of the etiologic factors of degenerative spinal diseases, which can lead to a variety of pathological spinal conditions such as disc herniation, spinal stenosis, and scoliosis. IVDD is a leading cause of lower back pain, the prevalence of which increases with age. Recently, Sirtuins/SIRTs and their related activators have received attention for their activity in the treatment of IVDD. In this paper, a comprehensive systematic review of the literature on the role of SIRTs and their activators on IVDD in recent years is presented. The molecular pathways involved in the regulation of IVDD by SIRTs are summarized, and the effects of SIRTs on senescence, inflammatory responses, oxidative stress, and mitochondrial dysfunction in myeloid cells are discussed with a view to suggesting possible solutions for the current treatment of IVDD. PURPOSE: This paper focuses on the molecular mechanisms by which SIRTs and their activators act on IVDD. METHODS: A literature search was conducted in Pubmed and Web of Science databases over a 13-year period from 2011 to 2024 for the terms "SIRT", "Sirtuin", "IVDD", "IDD", "IVD", "NP", "Intervertebral disc degeneration", "Intervertebral disc" and "Nucleus pulposus". RESULTS: According to the results, SIRTs and a large number of activators showed positive effects against IVDD.SIRTs modulate autophagy, myeloid apoptosis, oxidative stress and extracellular matrix degradation. In addition, they attenuate inflammatory factor-induced disc damage and maintain homeostasis during disc degeneration. Several clinical studies have reported the protective effects of some SIRTs activators (e.g., resveratrol, melatonin, honokiol, and 1,4-dihydropyridine) against IVDD. CONCLUSION: The fact that SIRTs and their activators play a hundred different roles in IVDD helps to better understand their potential to develop further treatments for IVDD. NOVELTY: This review summarizes current information on the mechanisms of action of SIRTs in IVDD and the challenges and limitations of translating their basic research into therapy.


Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Nucleus Pulposus , Sirtuins , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Displacement/metabolism , Nucleus Pulposus/metabolism , Oxidative Stress , Sirtuins/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/pathology
15.
J Clin Invest ; 134(6)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38488012

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Aged , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Aging , Cellular Senescence , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Intervertebral Disc/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism
16.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Article En | MEDLINE | ID: mdl-38544414

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Intervertebral Disc Degeneration , Receptors, IgG , Animals , Gene Expression Profiling , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Macrophages , NF-kappa B/genetics , NF-kappa B/metabolism , Nucleus Pulposus/metabolism , Humans , Rats , Receptors, IgG/metabolism
17.
Aging (Albany NY) ; 16(6): 5050-5064, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38517363

PURPOSE: This study explores the potential of Omilancor in treating Intervertebral Disc Degeneration (IDD) through MAP2K6 targeting. METHODS: We analyzed mRNA microarray datasets to pinpoint MAP2K6 as a key regulator implicated in IDD progression. Follow-up studies demonstrated that cisplatin (DDP) could prompt cellular senescence in vitro by upregulating MAP2K6 expression. Through molecular docking and other analyses, we identified Omilancor as a compound capable of binding to MAP2K6. This interaction effectively impeded the cellular senescence induced by DDP. RESULTS: We further showed that administration of Omilancor could significantly alleviate the degeneration of IVDs in annulus fibrosus puncture-induced rat model. CONCLUSIONS: Omilancor shows promise as a treatment for IDD by targeting MAP2K6-mediated cellular senescence.


Annulus Fibrosus , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats , Animals , Nucleus Pulposus/metabolism , Molecular Docking Simulation , Intervertebral Disc Degeneration/metabolism , Cellular Senescence/physiology , Annulus Fibrosus/metabolism
18.
Pharmacol Res ; 202: 107119, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417775

Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.


Diabetes Mellitus , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Glycolysis , Diabetes Mellitus/metabolism
19.
Int J Biol Macromol ; 262(Pt 1): 129950, 2024 Mar.
Article En | MEDLINE | ID: mdl-38320636

Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.


Intervertebral Disc Degeneration , Nucleus Pulposus , Rats , Animals , Down-Regulation , Nucleus Pulposus/metabolism , Mitophagy/physiology , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , TOR Serine-Threonine Kinases/metabolism , Glucose/metabolism , Apoptosis
20.
Cell Biol Int ; 48(4): 389-403, 2024 Apr.
Article En | MEDLINE | ID: mdl-38317355

Degeneration of intervertebral discs is considered one of the most important causes of low back pain and disability. The intervertebral disc (IVD) is characterized by its susceptibility to various stressors that accelerate the senescence and apoptosis of nucleus pulposus cells, resulting in the loss of these cells and dysfunction of the intervertebral disc. Therefore, how to reduce the loss of nucleus pulposus cells under stress environment is the main problem in treating intervertebral disc degeneration. Autophagy is a kind of programmed cell death, which can provide energy by recycling substances in cells. It is considered to be an effective method to reduce the senescence and apoptosis of nucleus pulposus cells under stress. However, further research is needed on the mechanisms by which autophagy of nucleus pulposus cells is regulated under stress environments. M6A methylation, as the most extensive RNA modification in eukaryotic cells, participates in various cellular biological functions and is believed to be related to the regulation of autophagy under stress environments, may play a significant role in nucleus pulposus responding to stress. This article first summarizes the effects of various stressors on the death and autophagy of nucleus pulposus cells. Then, it summarizes the regulatory mechanism of m6A methylation on autophagy-related genes under stress and the role of these autophagy genes in nucleus pulposus cells. Finally, it proposes that the methylation modification of autophagy-related genes regulated by m6A may become a new treatment approach for intervertebral disc degeneration, providing new insights and ideas for the clinical treatment of intervertebral disc degeneration.


Adenine/analogs & derivatives , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Nucleus Pulposus/metabolism , Autophagy , Apoptosis , Methylation
...